7,203 research outputs found

    A model-based approach for detection of objects in low resolution passive millimeter wave images

    Get PDF
    A model-based vision system to assist the pilots in landing maneuvers under restricted visibility conditions is described. The system was designed to analyze image sequences obtained from a Passive Millimeter Wave (PMMW) imaging system mounted on the aircraft to delineate runways/taxiways, buildings, and other objects on or near runways. PMMW sensors have good response in a foggy atmosphere, but their spatial resolution is very low. However, additional data such as airport model and approximate position and orientation of aircraft are available. These data are exploited to guide our model-based system to locate objects in the low resolution image and generate warning signals to alert the pilots. Also analytical expressions were derived from the accuracy of the camera position estimate obtained by detecting the position of known objects in the image

    Accurate estimation of object location in an image sequence using helicopter flight data

    Get PDF
    In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path

    Structure of Agkistrodotoxin in an orthorhombic crystal form with six molecules per asymmetric unit

    Get PDF
    This is the publisher's version, also available electronically from "http://scripts.iucr.org".The structure of agkistrodotoxin crystallized under basic conditions has been determined at 2.8 Å resolution by the molecular-replacement technique and refined to a crystallographic R factor of 0.194 and a free R factor of 0.260 with good stereochemistry. The molecular packing in the crystal differs from other PLA2s. The six molecules in the asymmetric unit form three dimers linked by Ca2+ ions in a near-perfect six-ligand octahedral coordinating system. Extensive intermolecular hydrophobic interactions occur at the interfacial recognition site of each neurotoxin molecule, which provides an insight into phospholipase A2-membrane interactions. This hydrophobic interaction-induced molecular association along the interfacial recognition site suggests a self-protection mechanism of agkistrodotoxin

    A model-based approach for detection of runways and other objects in image sequences acquired using an on-board camera

    Get PDF
    This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included
    corecore